Effects of respiratory muscle work on cardiac output and its distribution during maximal exercise.

نویسندگان

  • C A Harms
  • T J Wetter
  • S R McClaran
  • D F Pegelow
  • G A Nickele
  • W B Nelson
  • P Hanson
  • J A Dempsey
چکیده

We have recently demonstrated that changes in the work of breathing during maximal exercise affect leg blood flow and leg vascular conductance (C. A. Harms, M. A. Babcock, S. R. McClaran, D. F. Pegelow, G. A. Nickele, W. B. Nelson, and J. A. Dempsey. J. Appl. Physiol. 82: 1573-1583, 1997). Our present study examined the effects of changes in the work of breathing on cardiac output (CO) during maximal exercise. Eight male cyclists [maximal O2 consumption (VO2 max): 62 +/- 5 ml . kg-1 . min-1] performed repeated 2.5-min bouts of cycle exercise at VO2 max. Inspiratory muscle work was either 1) at control levels [inspiratory esophageal pressure (Pes): -27.8 +/- 0.6 cmH2O], 2) reduced via a proportional-assist ventilator (Pes: -16.3 +/- 0.5 cmH2O), or 3) increased via resistive loads (Pes: -35.6 +/- 0.8 cmH2O). O2 contents measured in arterial and mixed venous blood were used to calculate CO via the direct Fick method. Stroke volume, CO, and pulmonary O2 consumption (VO2) were not different (P > 0.05) between control and loaded trials at VO2 max but were lower (-8, -9, and -7%, respectively) than control with inspiratory muscle unloading at VO2 max. The arterial-mixed venous O2 difference was unchanged with unloading or loading. We combined these findings with our recent study to show that the respiratory muscle work normally expended during maximal exercise has two significant effects on the cardiovascular system: 1) up to 14-16% of the CO is directed to the respiratory muscles; and 2) local reflex vasoconstriction significantly compromises blood flow to leg locomotor muscles.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Effect of skeletal muscle demand on cardiovascular function.

Cardiac output is directed primarily to skeletal muscle during exercise. Recent investigations have examined how different groups of skeletal muscle compete for the cardiac output during exercise. To date, there is a lack of consistent findings on a blood flow steal effect of arm versus leg exercise, although the majority of data suggest that leg blood flow is not compromised when arm exercise ...

متن کامل

Effects of respiratory muscle work on exercise performance.

The normal respiratory muscle effort at maximal exercise requires a significant fraction of cardiac output and causes leg blood flow to fall. We questioned whether the high levels of respiratory muscle work experienced in heavy exercise would affect performance. Seven male cyclists [maximal O(2) consumption (VO(2)) 63 +/- 5 ml. kg(-1). min(-1)] each completed 11 randomized trials on a cycle erg...

متن کامل

Effects of training on the distribution of cardiac output in patients with coronary artery disease.

In nine patients with coronary artery disease, cardiac output distribution was evaluated at rest and during exercise by measurement of cardiac output and regional blood flow parameters (hepatic and muscle blood flow). In seven patients repeated values were obtained after a physical training program of 4 to 10 weeks' duration. After training, cardiac output was reduced at moderate work loads (13...

متن کامل

Comparing the Effect of Resistive Inspiratory Muscle Training and Incentive Spirometry on Respiratory Pattern of COPD patients

Background: Resistive Inspiratory Muscle Training (RIMT) is a well-known technique for rehabilitation of patients with Chronic Obstructive Pulmonary Disease (COPD). Incentive spirometry is another technique with potential viability for this application, but there is limited evidence in support of its efficacy in the rehabilitation of COPD patients. Aim: The objective of this study was to compar...

متن کامل

Influence of respiratory muscle work on VO(2) and leg blood flow during submaximal exercise.

The work of breathing (W(b)) normally incurred during maximal exercise not only requires substantial cardiac output and O(2) consumption (VO(2)) but also causes vasoconstriction in locomotor muscles and compromises leg blood flow (Q(leg)). We wondered whether the W(b) normally incurred during submaximal exercise would also reduce Q(leg). Therefore, we investigated the effects of changing the W(...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Journal of applied physiology

دوره 85 2  شماره 

صفحات  -

تاریخ انتشار 1998